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It has long been known that the universal scaling properties of linear polymers in disordered media are well
described by the statistics of self-avoiding walks �SAWs� on percolation clusters and their critical exponent
�SAW, with the SAW implicitly referring to the average SAW. Hitherto, static averaging has been commonly
used, e.g., in numerical simulations, to determine what the average SAW is. We assert that only kinetic, rather
than static, averaging can lead to asymptotic scaling behavior and corroborate our assertion by heuristic
arguments and a renormalizable field theory. Moreover, we calculate to two-loop order �SAW, the exponent
�max for the longest SAW, and a family of multifractal exponents ����.
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In the past twenty years, the critical behavior of polymers
in disordered media has generated a great deal of interest �for
a recent review, see �1��. The problem is relevant in a vast
range of different fields. To name a prominent example, the
transport properties of polymeric chains in porous media
might be exploitable commercially to enhance oil recovery.
It has long been known that polymers in disordered media
are well modeled by self-avoiding walks �SAWs� on perco-
lation clusters. The term SAW usually refers implicitly to the
average SAW. Despite the many ideas put forward and ex-
tensive numerical efforts, the critical behavior of polymers in
disordered media is still far from being completely under-
stood. The most unsettling problems are, perhaps, on the
analytical side, that the only existing field theoretic model
for studying average SAWs, the Meir-Harris �MH� model
�2�, has trouble with renormalizability �3,4� and, on the nu-
merical side, that simulations lead to widespread results for
the scaling exponent �SAW describing the mean length of
average SAWs �see �1��.

A conceptual subtlety that apparently has not been appre-
ciated much hitherto is the precise meaning of the average
SAW. That is, there are, essentially, two qualitatively differ-
ent ways of averaging over all SAWs between two connected
sites for a given random configuration of a diluted lattice,
one being static and the other being kinetic. In this Rapid
Communication, we conjecture that the statistics of linear
polymers in disordered media has no asymptotic scaling
limit, when static averaging is used. Since it is static averag-
ing that has been commonly employed in numerical work,
many simulations might have suffered from this nonscaling
behavior, which could explain the discrepancies between the
numerical results for �SAW. In the following, we first cor-
roborate our conjecture by heuristic arguments. Then, we
resort to renormalized field theory. It turns out that, for
achieving renormalizability, one has to use kinetic averaging;
static averaging leads to nonrenormalizability. We then em-
ploy our field theory to calculate �SAW, the corresponding
scaling exponents for the shortest and longest SAWs, and an
entire family of multifractal exponents to two-loop order.
Finally, we discuss the connection of kinetic averaging and
the MH model.

First, let us define what we mean by static and kinetic
averaging. In the framework of field theory, it is most con-
venient to model linear polymers in disordered media as
SAWs between two connected sites x and y of a diluted
lattice, where bonds are occupied with a probability p, and to
focus on the length L�x ,y� of a SAW �a random number
proportional to the number of monomers of the correspond-
ing polymer� rather than the Euclidian distance �x−y� of its
end points �2�. First, let us consider one given random con-
figuration C of the diluted lattice. Averaging over all the
SAWs belonging to the bundle B�x ,y ;C� of SAWs directed
from y to x yields the mean length

�L�x,y��C = K
�

�K
ln� 	

��B�x,y;C�
p���KL���
 , �1�

where L��� is the length of �, p���, with 	�p���=1, is a
weight factor that depends on the averaging procedure, and
K is the fugacity. Static averaging means that one simply
uses p����1. Kinetic averaging, on the other hand, means
that a SAW � earns a factor 1 /z contributing to p��� at each
ramification where z−1 other SAWs from the bundle
B�x ,y ;C� split off. The experimentally relevant quantity,
however, is not �L�x ,y��C, but rather its average �¯�p over
all configurations C at fixed p subject to the constraint that x
and y are connected. This average is expected to exhibit scal-
ing behavior

M�x,y� = ��L�x,y��C�p � �x − y�1/�SAW �2�

at a critical value Kc of the fugacity.
As we will demonstrate, SAWs on a percolation cluster

are not merely standard fractals. Rather, they are multifrac-
tals. In order to capture this multifractality, we define the
bond weights mb=	��B�x,y;C��b���p����1, where �b��� is 1
if the bond b belongs to the SAW � and zero otherwise, and
we introduce the multifractal moments
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L����x,y� = 	
b

sbmb
� �3�

with sb being the length of bond b. We will show that the
scaling behavior of their quenched averages,

M����x,y� = �L����x,y��p � �x − y�1/����
, �4�

is characterized by multifractal exponents ���� satisfying
��0�=1/Dbb, ��1�=�SAW, and ����=�, where Dbb is the fractal
dimension of the backbone and � is the percolation correla-
tion length exponent.

It is well known �5� that in a nonrandom medium �p=1�
the exponent �SAW is the same for static and kinetic averag-
ing. This may not be the case in a random medium, at least at
the percolation point, and static averaging does not lead to a
scaling law like Eq. �2�. Heuristically, this can be understood
by employing the node-link-blob picture of percolation clus-
ters in which a percolation cluster connecting two terminal
points, which is generically very inhomogeneous and asym-
metric, can be envisaged as two nodes linked by tortuous
ribbons that may contain blobs consisting of many short
links in their interior. We will now use this picture to dem-
onstrate that static averaging is unstable against coarse grain-
ing and that it therefore cannot be expected to produce the
correct asymptotic scaling behavior. Let us for simplicity
consider the cluster sketched in Fig. 1, which features two
links, one with and the other without a blob. With static
averaging the �upper� link with the blob acquires a much
larger weight then the other �lower� one even if it is much
shorter than the link with the blob. Then the statistics of the
mean length is dominated by the short upper link with its
many different SAWs induced by the blob. However, the
weights change drastically upon coarse graining. Suppose we
have some coarse graining procedure that culminates in con-
densing the blob into a single bond. After that, both links
have the same weight. However, the lower one, since it is
longer, now dominates the statistics. This demonstrates the
instability of the weights of static averaging under real space
renormalization as the group generated by repeated coarse
graining. In contrast, kinetic averaging does assign the same
weight to both links independent of the blob. Thus, kinetic
averaging is stable under coarse graining even in a strongly
inhomogeneous disordered medium.

To fortify our arguments, we now turn to renormalized
field theory. We will propose a theory for calculating �SAW,
as well as the entire family ����, that is renormalizable, pro-
vided that kinetic averaging is used. This theory is based on

the nonlinear random resistor network �NRRN�, where any
bond on a d-dimensional lattice is occupied with a resistor
with probability p or, respectively, empty with probability
1− p. Our theory, is motivated by the well known fact that
the shortest and the longest SAWs �the former is also known
as the chemical path� can be extracted from the NRRN �6�
and its field theoretic formulation, the Harris model �7�, by
considering specific limits of the nonlinearity r of the gener-
alized Ohm’s law governing the bond resistors,

Vj − Vi = 	�ij��Ii,j�r sgn Ii,j , �5�

where Vi is the voltage at lattice site i, 	�ij� is the resistance
of bond �ij�, and Ii,j is the current flowing through that bond.
As shown rigorously by Blumenfeld et al. �8�, the shortest
and the longest SAWs correspond to r→ +0 and r→−0, re-
spectively. Evidently, M�x ,y� must lie between the average
lengths of the shortest and the longest SAWs, which are, of
course, very different. Since M�x ,y� sits somewhere in this
discontinuity at r=0, it is not known how to extract it from
the NRRN by limit taking. Therefore, we propose here to
study the average SAW by using our real world interpretation
�9–12�, in which the Feynman diagrams for the NRRN are
viewed as being resistor networks themselves. The idea is to
put SAWs on these diagrams. That this idea is fruitful can be
checked explicitly with the instance of the chemical path.
Our approach reproduces to two-loop order the correspond-
ing exponent �min well established from dynamical percola-
tion theory �13�.

Our field theory is based on the Harris model as described
by the Hamiltonian

H =� ddx	

�
 �

2
�2 +

1

2
����2 +

w

2
��− ��
�r+1� +

g

6
�3� ,

�6�

where 
� is a replicated discretized voltage taking on �2N�D

values on a D-dimensional torus: 
� = � /N��n1 , . . . ,nD� with

ni=−N+1,−N+2, . . . ,N−1,N. �=��x ,
�� is the order pa-
rameter field, a continuum analog of a Potts spin. It trans-
forms according to the one irreducible representation of the
symmetric �permutation� group S�2N�D and thus, the model
features only a single coupling constant g. � and w are
strongly relevant critical control parameters. The scaling be-
havior of SAWs is associated with the renormalization of w
in the replica limit D→0. For details on the Harris model,
we refer to �2,9,10�. The diagrammatic perturbation theory of
the Harris model can be formulated in such a way that the
Feynman diagrams resemble real RRNs. In this approach,
which we refer to as the real world interpretation, the dia-
grams feature conducting propagators corresponding to oc-
cupied, conducting bonds and insulating propagators corre-
sponding to open bonds. The conducting bonds carry replica

currents conjugate to the replica voltages 
� . The resistance of
a conducting bond is given by its Schwinger parameter �14�.
In the following, we will refer only to these very basic as-
pects of the real world interpretation which will be sufficient
to follow the main line of argument. For further details on

FIG. 1. Percolation cluster in the node-link-blob picture.
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the real world interpretation, see Refs. �9–12�.
Now we employ the real world interpretation to study the

average SAW. As an example, let us consider a two-loop
diagram that resembles the node-link-blob cluster in Fig. 1
and where all internal propagators are conducting. For deter-
mining the contribution of this diagram to M�x ,y�, the essen-
tial step in our approach is to find out the length L of an
average SAW on that diagram. We can apply either the static
or the kinetic rule to calculate L according to Eq. �3� with
�=1, where now bond b is replaced by conducting propaga-
tor i and the Schwinger parameter �14� si is interpreted as the
corresponding length. As visualized in Fig. 2, static and ki-
netic averaging yield different results. The static rule gives
L�st�= �s1+s4+s5� /3+2�s2+s3� /3, whereas the kinetic rule
produces L�kin�= �s1+s2+s3� /2+ �s4+s5� /4. The remaining
steps in calculating the diagram are essentially textbook mat-
ter �14�. It turns out that the static rule does not lead to a
renormalizable theory. The reason is easily shown. In the
two-loop calculation of our example diagram, the nonprimi-
tive divergencies arising from the subintegrations of the one-
loop self-energy insertion must be canceled through the
counterterms introduced by the renormalization of this one-
loop insertion. However, the weights of L�st� are not in con-
formity with the weights arising in the corresponding one-
loop diagram with the counterterm insertion: crunching the
insertion to a point �corresponding to s4+s5→0� leads to
L�st�=s1 /3+2�s2+s3� /3 in contrast to L�kin�=s1 /2+ �s2

+s3� /2, which is equal to L of the one-loop self-energy dia-
gram with a point insertion. Hence, only the weighting ac-
cording to the kinetic rule works correctly in that it leads to
a cancellation of nonprimitive divergencies by one-loop
counterterms. Thus, the static rule has to be rejected on
grounds of renormalizability.

Besides revealing the imperative of kinetic averaging, this
theory yields two-loop results for the SAW exponents �SAW
and �max, which previously have been calculated �correctly�
only to one-loop order �2,7�, and the family ����,

�max =
1

2
+

�

168
+ � 5365

16464
+

15

28
�ln 2 −

69

70
ln 3
���

6

2

+ O��3� , �7�

���� =
1

2
+ �5

2
−

3

2�
 �

42
+ �589

21
−

397

14 � 2� +
9

4�
� �

42

2

+ O��3� , �8�

where �=6−d. �SAW is given by �SAW=��1�. Our result for
�SAW is compared to the available numerical estimates, to
our result for the longest SAW, and to the well known expo-
nent �min for the shortest SAW �9,10,13� in Fig. 3. The fol-
lowing points are worth noting. �i� ���� does not depend on �
in a linear or affine fashion which implies that SAWs on
percolation clusters are mulitfractal. �ii� ���� is in absolute
agreement with the well known results for Dbb and � in the
cases �=0 and �, respectively. �iii� �min and �max are not
related to the family ����. �iv� The theory is renormalizable
for arbitrary � if and only if kinetic averaging is used.

As mentioned above, the usual framework to study aver-
age SAWs on percolation clusters is the MH model as de-
scribed by the Hamiltonian

H =� ddx	
k

�k�rk − �2��k +
g

6
�3� . �9�

Here, �k= ��k;�1,. . .�k

i1,. . .ik �x��, 1�k�n, is an order parameter
field conjugate to an n-fold replicated m-component Heisen-
berg spin with vector indices il running from 1 to m and
replica indices �l� �1, . . . ,n� ordered so that �1� ¯ ��k.
The n replicas transform according to n different irreducible
representations of the direct product of the symmetric group
Sn and the orthogonal �rotation� group SO�m�. rk=	lwlk

l,
and �3 is a symbolic notation for the sum of the products of
three �k fields. Only those cubic terms are allowed for which
all pairs �i ,�� appear exactly twice. In this model, one can
extract �SAW from the renormalization of the relevant control
parameter w1 upon taking the replica limit n→0. The MH
Hamiltonian �9� is nonrenormalizable as it stands. One diffi-
culty that was pointed out by Le Doussal and Machta �3�
several years ago is that the critical values �rk

c� of the control
parameters are different for different k, i.e., the model is
highly multicritical. A second problem, which to our knowl-

FIG. 2. �Color online� Static and kinetic rule for averaging
SAWs.

FIG. 3. �Color online� The � expansions of the exponents �min

�blue top curve�, �SAW �red middle curve�, and �max �green bottom
curve�. Possible extrapolations at low dimensions d are shown by
dashed lines. The squares with error bars symbolize numerical re-
sults for �SAW as compiled in �1�.
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edge has not been discussed hitherto, is that the order param-
eter fields �k for different k belong to different irreducible
tensor representations of underlying symmetry group Sn
�SO�m� �see above�. Hence, strictly speaking, one needs
independent coupling constants gk,k�,k� for each product
�k�k��k� �note that this is �i� not implemented in the origi-
nal MH Hamiltonian �9� and �ii� different in the Harris
model�, and the fields �k need k-dependent renormalization
factors �15�. Recently, these difficulties caused the failure of
a two-loop calculation of �SAW by von Ferber et al. �4�.

As far as its application to the average SAW is concerned,
the renormalizability of the MH model can be rescued by a
specific interpretation of the replica limit which has close ties
to kinetic averaging. Our analysis of the MH model �details
will be given elsewhere �17�� led to the following key find-
ings. If the replica limit is taken after all summations over all
possible arrangements of internal replica indices of a dia-
gram, then the MH model reproduces static averaging and, as
demonstrated above, is not renormalizable. If, however, the
replica limit is taken, in the spirit of Ref. �16�, as early as
possible, i.e., loop after loop, or at least for each renormal-

ization part, then the MH model reproduces kinetic averag-
ing. This is the only interpretation of the replica limit of the
MH model that leads to a renormalizable theory of SAWs in
disordered media. With this interpretation, the MH model, in
particular, produces the same result for �SAW as our real
world interpretation and thereby provides an important con-
sistency check for the validity of the application of the latter
to SAWs.

Closing, we would like to emphasize that our renormal-
ization group arguments are, although certainly well
founded, not rigorous in the sense of a mathematical proof
since they rely on our real world interpretation of Feynman
diagrams. This interpretation thrives on analogy and there
exist to date no rigorous mathematical arguments on how far
its validity extends. However, given all its successes in the
past, we would be surprised if it failed in describing SAWs
on percolation clusters. The well known MH model, when
interpreted carefully, corroborates the imperative of kinetic
averaging and confirms our two-loop result for �SAW.
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